What is a Character set?
Like every other language, 'C' also has its own character set. A program is a set of instructions that, when executed, generate an output. The data that is processed by a program consists of various characters and symbols. The output generated is also a combination of characters and symbols.
A character set in 'C' is divided into,
· Letters
· Numbers
· Special characters
· White spaces (blank spaces)
A compiler always ignores the use of characters, but it is widely used for formatting the data. Following is the character set in 'C' programming:
1. Letters
· Uppercase characters (A-Z)
· Lowercase characters (a-z)
2. Numbers
· All the digits from 0 to 9
3. White spaces
· Blank space
· New line
· Carriage return
· Horizontal tab
4. Special characters
· Special characters in 'C' are shown in the given table,
	, (comma)
	{ (opening curly bracket)

	. (period)
	} (closing curly bracket)

	; (semi-colon)
	[(left bracket)

	: (colon)
] (right bracket)

	? (question mark)
	((opening left parenthesis)

	' (apostrophe)
) (closing right parenthesis)

	" (double quotation mark)
	& (ampersand)

	! (exclamation mark)
	^ (caret)

	|(vertical bar)
	+ (addition)

	/ (forward slash)
	- (subtraction)

	\ (backward slash)
	* (multiplication)

	~ (tilde)
	/ (division)

	_ (underscore)
	> (greater than or closing angle bracket)

	$ (dollar sign)
	< (less than or opening angle bracket)

	% (percentage sign)
	# (hash sign)

What is Token in C?
TOKEN is the smallest unit in a 'C' program. It is each and every word and punctuation that you come across in your C program. The compiler breaks a program into the smallest possible units (tokens) and proceeds to the various stages of the compilation.
In a C program ,tokens are building blocks. A token is divided into six different types, viz, Keywords, Operators, Strings, Constants, Special Characters, and Identifiers.

Types of tokens			Tokens used
1.Keywords						int,void
2.Identifier						x,main,printf
3.Constant				1,2,Incremented value:,Enter a number
4.Operators			Addressof(&),Addition(+),Multiplication(*)
5.Special Symbols			(,),{,},%,&,:

1.KEYWORDS
In 'C' every word can be either a keyword or an identifier.
Keywords have fixed meanings, and the meaning cannot be changed. They act as a building block of a 'C' program. There are a total of 32 keywords in 'C'. Keywords are written in lowercase letters.

Following table represents the keywords in 'C'-
	auto
	double
	int
	struct

	break
	else
	long
	switch

	case
	enum
	register
	typedef

	char
	extern
	return
	union

	const
	short
	float
	unsigned

	continue
	for
	signed
	void

	default
	goto
	sizeof
	volatile

	do
	if
	static
	while

2.IDENTIFIER
An identifier is nothing but a name assigned to an element in a program. Example, name of a variable, function, etc. Identifiers are the user-defined names consisting of 'C' standard character set. As the name says, identifiers are used to identify a particular element in a program. Each identifier must have a unique name.
Following rules must be followed for identifiers:
1. The first character must always be an alphabet or an underscore.
2. It should be formed using only letters, numbers, or underscore.
3. A keyword cannot be used as an identifier.
4. It should not contain any whitespace character.
5. The name must be meaningful.

Thus just as persons,cities or streets have names ,the C entities such as variables,functions,files etc are given unique names(identifiers) for their identification in a C program.

Following are some examples of identifiers:

IDENTIFIER VALID? REMARK
Sum valid
 Char				invalid			keywords are not allowed
Price#				invalid			special symbols are not allowed
Var 1				invalid			blank space not allowed		
avg_num		 valid

3.Constants
Constants are the fixed values that never change during the execution of a program. Following are the various types of constants:
Integer constants
An integer constant is nothing but a value consisting of digits or numbers. These values never change during the execution of a program. Integer constants can be octal, decimal and hexadecimal.
1. Decimal constant contains digits from 0-9 such as,
Example, 111, 1234
Above are the valid decimal constants.
2. Octal constant contains digits from 0-7, and these types of constants are always preceded by 0.
Example, 012, 065
Above are the valid decimal constants.
3. Hexadecimal constant contains a digit from 0-9 as well as characters from A-F. Hexadecimal constants are always preceded by 0X.
Example, 0X2, 0Xbcd
Above are the valid hexadecimal constants.
The octal and hexadecimal integer constants are very rarely used in programming with 'C'.
Character constants
A character constant contains only a single character enclosed within a single quote (''). We can also represent character constant by providing ASCII value of it.
Example, 'A', '9'
Above are the examples of valid character constants.
String constants
A string constant contains a sequence of characters enclosed within double quotes ("").
Example, "Hello", "Programming"
These are the examples of valid string constants.
Real Constants
Like integer constants that always contains an integer value. 'C' also provides real constants that contain a decimal point or a fraction value. The real constants are also called as floating point constants. The real constant contains a decimal point and a fractional value.
Example, 202.15, 300.00
These are the valid real constants in 'C'.
A real constant can also be written as,
Mantissa e Exponent
For example, to declare a value that does not change like the classic circle constant PI, there are two ways to declare this constant
1. By using the const keyword in a variable declaration which will reserve a storage memory
 #include <stdio.h>
int main() {
const double PI = 3.14;
printf("%f", PI);
//PI++; // This will generate an error as constants cannot be changed
return 0;}
2. By using the #define pre-processor directive which doesn't use memory for storage and without putting a semicolon character at the end of that statement
#include <stdio.h>
#define PI 3.14
int main() {
printf("%f", PI);
return 0;}

4. Special Symbols of C
Apart from letters and digits, there are some special characters in C, which will help you to manipulate or perform data operations. Each special symbol has a specific meaning to the C compiler.
1. [] – Square brackets – The opening and closing brackets of an array indicate single and multidimensional subscripts.
2. () – Simple brackets – Used to represent function declaration and calls, used in print statements.
3. { } – Curly braces – Denote the start and end of a particular fragment of code which may be functions or loops or conditional statements.
4. , – Comma – Separate more than one statements, like in the declaration of different variable names in C.
5. # – Hash / Pound / Preprocessor – A preprocessor directive, utilize for denoting the use of a header file.
6. * – Asterisk – To declare pointers, used as an operand for multiplication.
7. ~ – Tilde – As a destructor to free memory.
8. . – Period/dot – To access a member of a structure.

Summary
· A token is the smallest unit in a program.
· A keyword is reserved words by language.
· There are total of 32 keywords.
· An identifier is used to identify elements of a program.
· A constant is a value that doesn't change throughout the execution of a program.
· A variable is an identifier which is used to store a value.
· There are four commonly used data types such as int, float, char and a void.
· Each data type differs in size and range from one another.

