Types of Functional dependencies in DBMS

 Functional dependency and attribute closure
A functional dependency is a constraint that specifies the relationship between two sets of attributes where one set can accurately determine the value of other sets.
 It is denoted as X → Y, where X is a set of attributes that is capable of determining the value of Y. The attribute set on the left side of the arrow, X is called Determinant, while on the right side, Y is called the Dependent.
 Functional dependencies are used to mathematically express relations among database entities .If the information stored in a table can uniquely determine another information in the same table, then it is called Functional Dependency. Consider it as an association between two attributes of the same relation.
If P functionally determines Q, then
	P -> Q

Let us see an example −
<Employee>
	EmpID
	EmpName
	EmpAge

	E01
	Amit
	28

	E02
	Rohit
	31

In the above table, EmpName is functionally dependent on EmpID because EmpName can take only one value for the given value of EmpID:
	EmpID -> EmpName

The same is displayed below −
[image: https://www.tutorialspoint.com/assets/questions/media/9674/functional_dependency.png]

Example:
	roll_no
	name
	dept_name
	dept_building

	42
	abc
	CO
	A4

	43
	pqr
	IT
	A3

	44
	xyz
	CO
	A4

	45
	xyz
	IT
	A3

	46
	mno
	EC
	B2

	47
	jkl
	ME
	B2

From the above table we can conclude some valid functional dependencies:
· roll_no → { name, dept_name, dept_building },→ Here, roll_no can determine values of fields name, dept_name and dept_building, hence a valid Functional dependency
· roll_no → dept_name , Since, roll_no can determine whole set of {name, dept_name, dept_building}, it can determine its subset dept_name also.
· dept_name → dept_building , Dept_name can identify the dept_building accurately, since departments with different dept_name will also have a different dept_building
· More valid functional dependencies: roll_no → name, {roll_no, name} ⇢ {dept_name, dept_building}, etc.

Here are some invalid functional dependencies:

1. name → dept_name Students with the same name can have different dept_name, hence this is not a valid functional dependency.
2 .dept_building → dept_name There can be multiple departments in the same building, For example, in the above table departments ME and EC are in the same building B2, hence dept_building → dept_name is an invalid functional dependency.
3.More invalid functional dependencies: name → roll_no, {name, dept_name} → roll_no, dept_building → roll_no, etc.

Armstrong’s axioms/properties of functional dependencies:
1. Reflexivity: If Y is a subset of X, then X→Y holds by reflexivity rule
For example, {roll_no, name} → name is valid.
2. Augmentation: If X → Y is a valid dependency, then XZ → YZ is also valid by the augmentation rule.
For example, If {roll_no, name} → dept_building is valid, hence {roll_no, name, dept_name} → {dept_building, dept_name} is also valid.→
3. Transitivity: If X → Y and Y → Z are both valid dependencies, then X→Z is also valid by the Transitivity rule.
For example, roll_no → dept_name & dept_name → dept_building, then roll_no → dept_building is also valid.

Types of Functional dependencies in DBMS:
1. Trivial functional dependency
2. Non-Trivial functional dependency
3. Multivalued functional dependency
4. Transitive functional dependency

1. Trivial Functional Dependency
In Trivial Functional Dependency, a dependent is always a subset of the determinant.

i.e. If X → Y and Y is the subset of X, then it is called trivial functional dependency

For example,
	roll_no
	name
	age

	42
	abc
	17

	43
	pqr
	18

	44
	xyz
	18

Here, {roll_no, name} → name is a trivial functional dependency, since the dependent name is a subset of determinant set {roll_no, name}
Similarly, roll_no → roll_no is also an example of trivial functional dependency.

2. Non-trivial Functional Dependency
In Non-trivial functional dependency, the dependent is strictly not a subset of the determinant.
i.e. If X → Y and Y is not a subset of X, then it is called Non-trivial functional dependency.
For example,
	roll_no
	name
	age

	42
	abc
	17

	43
	pqr
	18

	44
	xyz
	18

Here, roll_no → name is a non-trivial functional dependency, since the dependent name is not a subset
of determinant roll_no
Similarly, {roll_no, name} → age is also a non-trivial functional dependency, since age is not a subset of {roll_no, name}

3. Multivalued Functional Dependency
In Multivalued functional dependency, entities of the dependent set are not dependent on each other.
i.e. If a → {b, c} and there exists no functional dependency between b and c, then it is called a multivalued functional dependency.

For example1
	roll_no
	Name
	age

	42
	Abc
	17

	43
	Pqr
	18

	44
	Xyz
	18

	45
	Abc
	19

Here, roll_no → {name, age} is a multivalued functional dependency, since the dependents name & age are not dependent on each other(i.e. name → age or age → name doesn’t exist !)

 Actually,when existence of one or more rows in a table implies one or more other rows in the same table, then the Multi-valued dependencies occur.
If a table has attributes P, Q and R, then Q and R are multi-valued facts of P.
It is represented by double arrow −
	->->

For our example:
	P->->Q
Q->->R

In the above case, Multivalued Dependency exists only if Q and R are independent attribute.
 Multivalued dependency occurs when there are more than one independent multivalued attributes in a table
Example2:
Consider a bike manufacture company which produces two colours(black and white)in each model every year:
	Bike_model
	Manuf_year
	color

	M1001
	2007
	black

	M1001
	2007
	red

	M2012
	2008
	black

	M2012
	2008
	red

	M2222
	2009
	black

	M2222
	2009
	red

Here,columns manuf_year and color are independent of each other and dependent on bike_model.In this case this two columns are said to be multivalued dependent on bike_model
 This dependencies can be represented like this.

Bike_model->->manuf_year
Bike_model->->color
4. Transitive Functional Dependency
In transitive functional dependency, dependent is indirectly dependent on determinant.

i.e. If a → b & b → c, then according to axiom of transitivity, a → c. This is a transitive functional dependency

For example,
	enrol_no
	name
	dept
	building_no

	42
	abc
	CO
	4

	43
	pqr
	EC
	2

	44
	xyz
	IT
	1

	45
	abc
	EC
	2

Here, enrol_no → dept and dept → building_no,
Hence, according to the axiom of transitivity, enrol_no → building_no is a valid functional dependency. This is an indirect functional dependency, hence called Transitive functional dependency.

 A transitive dependency can only occur in a relation of three or more attributes.This dependency helps us normalizing the database in 3NF(third normal form)

Let us take another example:
Example:
	book
	author
	author_age

	Game of thrones
	George R.R.Martin
	66

	Harry potter
	J.K Rowling
	49

	Dying of the light
	George R.R.Martin
	66

Bookauthor (if we know the book,we know the author name)
Authorauthor_age
 Therefore as per the rule of transitive dependency
Bookauthor_age should hold,that makes sense because if we know the book name then we can the author’s age

Fully-functionally Dependency
An attribute is fully functional dependent on another attribute, if it is Functionally Dependent on that attribute and not on any of its proper subset.
For example, an attribute Q is fully functional dependent on another attribute P, if it is Functionally Dependent on P and not on any of the proper subset of P.
Let us see an example −
<ProjectCost>
	ProjectID
	ProjectCost

	001
	1000

	002
	5000

<EmployeeProject>
	EmpID
	ProjectID
	Days (spent on the project)

	E099
	001
	320

	E056
	002
	190

The above relations states:
	EmpID, ProjectID, ProjectCost -> Days

However, it is not fully functional dependent.
Whereas the subset {EmpID, ProjectID} can easily determine the {Days} spent on the project by the employee.
This summarizes and gives our fully functional dependency −
	{EmpID, ProjectID} -> (Days)

Partial Dependency
Partial Dependency occurs when a nonprime attribute is functionally dependent on part of a candidate key.
The 2nd Normal Form (2NF) eliminates the Partial Dependency. Let us see an example −
<StudentProject>
	StudentID
	ProjectNo
	StudentName
	ProjectName

	S01
	199
	Katie
	Geo Location

	S02
	120
	Ollie
	Cluster Exploration

In the above table, we have partial dependency; let us see how −
The prime key attributes are StudentID and ProjectNo.
As stated, the non-prime attributes i.e. StudentName and ProjectName should be functionally dependent on part of a candidate key, to be Partial Dependent.
The StudentName can be determined by StudentID that makes the relation Partial Dependent. StudentIDstudentname
The ProjectName can be determined by ProjectID, which that the relation Partial Dependent. ProjectNoprojectname

image1.png
EmplID -> EmpName

Employee Name (EmpName) is functionally
dependent on Employee ID (EmplID)

