
 1

Fundamentals of C Language

Structure of a C program:

C language does not actually follow any specific method of

writing a program. It is a case sensitive language. All the statements

must be written in lower case letters (small latters). The structure of a C

program is as follows:

< Header files >

< Global declaration of variables >

Main ()

{

 < Local declaration of variables >

- - - - - - - - - - -

< Statements >

- - - - - - - - - - -

}

< sub programs - function blocks >

Q. What are the basic steps involved in writing a computer program?

Solution:

Writing of programs may involved the following steps:

1. Understanding the problem.

2. Planning the method of solution.

3. Development of the methods by using suitable algorithms,

flowcharts, etc.

4. Coding the instructions in a programming language.

5. Transforming the instructions into machine readable form

(using an input medium)

6. Program testing and debugging.

7. Documentation of the works involved in the production of

the program.

 2

Notes:

a) Pseudo code: Pseudo code consists of English-like statements

describing an algorithm. It is written using simple phrases and

avoids cryptic symbols. It is independent of high level languages

and is a very good means of expressing an algorithm. It is written

in a structured manner and indentation is used to increase clarity.

As an example, the following algorithm finds and returns the

maximum of n given numbers:

1 Algorithm Max(A,n)

2 /* A is an array of size n with index starts from 1 */

3 {

4 Result = A[1];

5 for i= 2 to n do

6 if A[i] > Result then Result := A[i];

7 return Result

8 }

b) C-preprocessor: The C-preprocessor is a collection of special

statements, called directives, which are executed at the beginning

of the program compilation. The commands for the preprocessor

are inserted in C source-code that is (.c) files and called compiler

directives. Each compiler directive is prefixed by a hash sign (#).

Examples of preprocessor directives are #include, #define, #if,

#elif, #endif, #undef etc.

#define (Macro Directive): „C‟ allows defining an identifier

having constant value using #define directive. This is called a

preprocessor directive as if it is not part of a C program. This

directive is placed at the beginning of a C program. The symbol

occurs in the first column and no semicolon is allowed at the

end.

For example,

 #define PI 3.14

 #define MAXIMUM 100

 3

#include (File Directive): #include is also a processor directive.

This directive causes one file to be included in another for

example #include<stdio.h> which appears at the start of the

program.

c) Library function: Library functions are prewritten routines that

carry out various commonly used operations or calculations. They

are contained within one or more library files that accompany each

C compiler.

Some library functions are described below:

fclose(): The function fclose() closes a stream. The fclose()

function returns 0 if the close operation is successful, otherwise it

returns -1.

printf(): The printf() function writes formatted output to stdout

i.e. standard output device.

strcpy(): strcpy() function copies one string to another string.

C-preprocessor C-preprocessor

Ex: What is a header file in C? List any two header files.

Solution: A C program is written using many functions, which are

available under many header files. The required header file has to be

included whenever such functions are used in the program.

Example:

 #include<stdio.h>

 #include<conio.h>

Ex: Explain the need for the following:

#include<stdio.h>

#include<math.h>

Solution: The header file <stdio.h> is used to include and link standard

input/output functions in a C program.

 4

The header file <math.h> is used to include and link mathematical

functions like sqrt(), fabs() and so on in a C program.

Q. What is Preprocessor?

Solution: The preprocessor is used to modify your program according to

the preprocessor directives in your source code. Preprocessor directives

(such as #define) give the preprocessor specific instructions on how to

modify your source code. The preprocessor reads in all of your include

files and the source code you are compiling and creates a preprocessed

version of your source code. This preprocessed version has all of its

macros and constant symbols replaced by their corresponding code and

value assignments. If your source code contains any conditional

preprocessor directives (such as #if), the preprocessor evaluates the

condition and modifies your source code accordingly. The preprocessor

contains many features that are powerful to use, such as creating macros,

performing conditional compilation, inserting predefined environment

variables into your code, and turning compiler features on and off. For

the professional programmer, in-depth knowledge of the features of the

preprocessor can be one of the keys to creating fast, efficient programs.

Q. What is a computer program?

A set of instructions written in one of the programming languages to

solve a problem is called a computer program.

Q. What is an assembler?

An assembler is a computer program or translator which translates an

assembly language program into a machine language program.

 5

Q. What is a source program ?

Solution:

The language in which a programmer writes programs is called

source language. It may be a high-level language or an assembely

language. A program written in a source language is called a source

program. When a source program is converted into machine code by an

assembler or compiler it is known as an object program.

Q. What is an object program ?

The translated or binary form of a source program is called an object

program.

Q. What is an executable program ?

A program generated from object program by linking the input/output

devices in order to execute the instructions given in a source program is

called an executable program.

Q. What is a text editor ?

A text editor is a program which is used to type and edit your computer

program or document. Commonly used editors are Turbo, NE(Norton

Editor)Vi editor(Used in UNIX system)

Q. What is an operating system ?

An operating system is a collection of programs used to connect the user

with the electronic hardware. The OS programs actuate and control the

activities of a computer.

 6

Q.: What are assemblers, compilers and interpreters?

Solution:

Assembler: An assembler is a computer program or translator which

translates an assembly language program into a machine language

program.

Compiler: Compiler translates a source program, written in high-level

language into machine language. Compiler takes the whole program at

the input and check for errors. So, it is fast in the speed. Most of the

high level languages are compiled language.

 One of the feature of the compiler that, it will convert the source

program in the object program. So, every time no need of source

program.

Interpreter: Interpreter translates each statement of the source program

into a sequence of machine level instructions. Interpreters takes the input

line by line and check for the errors. So, it is slower than compiler.

Interpreter always need the source program every time.

Q. : What do you understand by compilation and execution of a

program?

Solution: To translate the entire source code of a program from a high-

level language into object code prior to execution of the program is

known as compilation. A program that performs this task is known as

compiler. When the object code made after compilation, the object code

is linked with other library code, which are needed for execution of the

program. The resulting code is known as executable code. If some

error(s) occur during linking, debug them and compile the program

again. After successful compilation we get file with .obj extension and

after linking a file with .exe will be created. After executing the .exe file

the result is obtained.

 7

a. Function and Subroutine:

Solution:

Function: Function is the set of statements which can perform particular

operation and called in the program whenever needed.

 Function always return value

 Function return value therefore it can be assign to the variable at

the right side.

Subroutine: Subroutine is also same as function in sense set of

statements to perform particular task.

 It always perform task, never return any value.

 The output of the subroutine will never assigned to the variable.

Q.8: State the differences between compiler and interpreter. State the

advantages and disadvantages of machine level language, assembly

language and high level language.

Solution:

The following table lists the differences between a Compiler and an

Interpreter.

 Compiler Interpreter

1 Scans the entire program

first and then translates it

into machine code

Translates the program line

by line.

2 Converts the entire program

to machine code; when all

the syntax errors are

removed execution takes

place.

Each time the program is

executed, every line is

checked for syntax error and

then converted to equivalent

machine code.

3 Slow for debugging Good for fast debugging

4 Execution time is less Execution time is more

Advantage of Machine Language:

It is faster in execution since the computer directly executing it.

 8

Disadvantage of Machine Language:

It is difficult to understand and develop a program using machine

language. Anybody going through this program for checking will have a

difficult task understanding what will be achieved when this program is

executed. Nevertheless, the computer hardware recognizes only this type

of instruction code.

 Advantage of Assembly Language:

Writing a program in assembly language is more convenient than

in machine language. Instead of binary sequence, as in machine

language, it is written in the form of symbolic instructions. Therefore, it

gives a little more readability.

Disadvantage of Assembly Language:

Assembly language (program) is specific to a particular machine

architecture. Assembly languages are designed for specific make and

model of a microprocessor. It means that assembly language programs

written for one processor will not work on a different processor if it

architecturally different. That is why the assembly language program is

not portable.

 Assembly language is not as fast as machine language. It has to be

first translated into machine (binary) language code.

Advantage of High-level Programming Language:

There are four main advantages of high-level programming languages.

These are:

(i) Readability: Programs written in these languages are more

readable than assembly and machine language.

(ii) Portability: Programs could be run on different machines with

little or no change. We can, therefore, exchange software

leading to creation of program libraries.

(iii) Easy debugging: Errors could be removed (debugged).

(iv) Easy Software development: Software could easily be

developed. Commands of programming language are similar to

natural language (ENGLISH).

Q. Give the difference between testing and debugging of a program.

Solution:

 9

Testing and debugging are two separate tasks. The differences between

these two processes are outlined in Table 1:

Table 1: Differences between Testing and Debugging

Testing Debugging

1. Testing is the process in which

a program is validated.

Debugging is a process in which

program errors are removed.

2. Testing is complete when all

desired verifications in terms of

the specifications have been

performed

Debugging is a process that ends

only temporarily, because

subsequent execution of a

program may uncover other

errors thereby restarting the

debugging process.

3. Testing can and should be

planned. It is a definable task in

which the how and what to test

can be specified. Testing can be

scheduled to take place at a

specific time in the development

cycle.

Debugging is a reactive

procedure, which stems from

testing. It cannot be planned

ahead of time. The best that can

be done is to establish guidelines

of how to debug and develop a

list of “what to look for.”

4. Testing can begin in the early

stages of the development effort.

Of course, the test themselves

must be run near the end of a

project, but the decisions of what

to test, how to test, with what

kind of data can and should be

completed before the coding is

started.

Debugging, on the other hand,

cannot begin until the end of the

development cycle, because it

requires an executable program.

Q. : Differentiate between syntax errors and run-time error.

Solution: When the compiler detects an error, the computer will display

an error message.

(a) Syntax error messages: Syntax error or compilation errors are

detected and displayed by the compiler as it attempts to translate our

program. If a statement has a syntax error, it cannot be translated and our

program will not executed.

 10

(b) Runtime error messages: Run time errors are detected by the

computer and are displayed during execution of a program. A run-time

error occurs when the program directs the computer to perform an illegal

operation, such as dividing a number by zero. When run-time error

occurs, the computer will stop executing our program and will print a

diagnostic our program and will print a diagnostic message that indicates

the line where the error was detected.

Q. What is an lvalue?

Solution:

An lvalue is an expression to which a value can be assigned. The lvalue

expression is located on the left side of an assignment statement, whereas

an rvalue is located on the right side of an assignment statement. Each

assignment statement must have an lvalue and an rvalue. The lvalue

expression must reference a storable variable in memory. It cannot be a

constant.

Q. Distinguish between L-value and R-value giving two examples of

each.

OR

What do you understand by R-value and L-value? Give suitable

examples.

Solution: The address associated with a program variable is in C called

its lvalue; the contents of that location is its rvalue, the quantity which

we think of as the value of the variable. The rvalue of a variable may

change as program execution proceeds; its lvalue, never. The distinction

between lvalue and rvalues becomes sharper if we consider the

assignment operation with variables alpha and beta:

Alpha= beta;

beta, on the right hand side of the assignment operator, is the quantity to

be found at the address associated with beta, i.e., is an rvalue, the

contents of the variable beta. alpha , on the left hand side, is the address

at which the contents are altered as a result of the assignment. alpha is

 11

an lvalue. The assignment operation deposits beta’s rvalue at alpha’s

lvalue. Think of an lvalue as something to which an assignment can be

made.

Q.: What's the difference between #include <> and #include "" ?

Solution: The <> syntax is typically used with Standard or system-supplied headers,

while "" is typically used for a program's own header files.

Q. Differentiate between compile-time and run-time errors giving proper examples of

each.

OR

Give one example each of run-time and compile-time errors.

Solution:

A compile-time error is an error that occurs when a program is being

compiled. Examples: syntax errors such as omitting a required semicolon, using an

undeclared variable, using a keyword for the name of a variable.

A run-time error is an error that occurs when a program is running. Numeric

overflow and division by zero are examples of run-time errors.

Q. Mention any two operating systems commonly used.

Solution: Commonly used two operating systems are:

 Windows-XP or Windows 2003 server and

 Linux or Unix

Q. Which translator reads an entire program written in a high-level language and

converts it into machine language?

Soution: Compiler is a translator which reads an entire program written in a high-

level language and converts it into machine language.

Q. Explain the differences between:

 Third generation and Fourth generation languages.

Solution:
3GL‟s supply a few small operations which can be combined with great

flexibility to accomplish almost anything. The cost, of course, is in time-consuming

detail in which each and every bit of code must be cast.

 12

3GL or third-generation language is a “high-level” programming language,

such as PL/I, C or Java. A compiler converts the statements of a specific high-level

programming language into machine language.

3GL language requires a considerable amount of programming knowledge.

Conversely, 4GL application generators include meta-operations which provide

much more functionality for a gi How does the type ven amount of code.

4GL or fourth-generation language is designed to be closer to natural

language than a 3GL language. Languages for accessing database are often described

as 4GLs.

Q. What is top-down design? Why should a program be documented? What do you

meant by bug and debugging?

Solution:

Top-down design is the technique of breaking down a problem into various

major tasks needed to be performed. Each of these tasks is further broken down into

separate subtasks, and so on till each subtask is sufficiently simple to be written as a

self-contained or procedure module. The entire solution of the problem will then

consist of a series of simple modules.

 Top-down approach is made use of in the system analysis and design process.

 The top-down approach, starting at the general levels to gain an

understanding of the system and gradually moving down to levels of greater details is

done in the analysis stage. In the process of moving from top to bottom, each

component is exploded into more and more details.

 Thus, the problem at hand is analyzed or broken down into major

components, each of which is again broken down if necessary.

 A program should be documented as it provides the information that one

needs in order to use a program. This information includes a number of different

items. These items are:

a. A description of the application area of the program or what will this program

do?

b. A description of the input data that the program requires.

c. A description of the output produced by the program.

d. A description of the commands needed to start the program.

e. A description of the kinds of interactions that are possible with the program.

f. An explanation of all the messages that the program can produce.

g. A discussion (in non-technical terms) of the performance capabilities and

limitations of the program.

So long as computers are programmed by human beings, computer programs will

be subject to errors. Programming errors are known as bugs and the process of

detecting and correcting these errors is called debugging. In general, testing is the

process of making sure that the program performs the intended task, and debugging

is the process of locating and eliminating program errors.

 13

Q. What is top-down program design? Explain the needs of documentation.

Solution:

Top-down design is the technique of breaking down a problem into various

major tasks needed to be performed. Each of these tasks is further broken down into

separate subtasks, and so on till each subtask is sufficiently simple to be written as a

self contained or procedure module. The entire solution of the problem will then

consist of a series of simple modules.

 Top-down approach is made use of in the system analysis and design process.

 The top-down approach, starting at the general levels to gain an

understanding of the system and gradually moving down to levels of greater details is

done in the analysis stage. In the process of moving from top to bottom, each

component is exploded into more and more details.

 Thus, the problem at hand is analyzed or broken down into major

components, each of which is again broken down if necessary.

The needs of documentation are:

a. To help in the design of the system by working to a set of standards

and having available a clear description of the work done so far. The

documentation needs to be kept up-to-date throughout the project.

b. Good documentation ensures that everyone involved in the system

(system designers, programmers, and users) fully understand how

their aspect of the system will work. For example, what data will be

inputted and how, and what information will be available from the

system. This allows any misunderstandings or disagreements to

surface before they become deeply entrenched in the system.

c. To ensure that the system can be maintained after completion even

through the programmers involved in the original design or

programming of the system may not be available. It is essential that

proper documentation is kept to enable a newcomer to make necessary

corrections, alterations or enhancements.

&&&&&&&&&&

