16. PHASE VELOCITY

The phase velocity of a wave is the velocity with which a point of definite phase of the wave, such
as its crest or trough is propagating through a medium.
A one-dimensional harmonic wave is described by a wave function y (x, ¢) as
w(x f) = Asin (kx— ot + ¢)

where 4 is the amplitude, o is the angular frequency, & is the wave number or propagation constant and
¢ is an initial phase, which is constant. The argument for the sine function 6 (x,f) = kx—wr+¢ is called the

phase of the wave. A surface of constant phase is known as a wave front.

~(16.1)

Therefore, for a wave front, the phase
0 (x,f) = kx—wt+ ¢ is constant -(16.2)

- If we assume that the initial phase ¢ = 0 then kx — ¢ = C, where C is a constant.
Therefore, the equation of the wave front for a one-dimensional harmonic wave is
C+ ot
k

This equation represents a plane parallel to the yz plane. Thus, the wave fronts for a one-dimensional
harmonic wave are planes perpendicular to the direction of motion of wave and hence such a wave is also

x=

called plane wave.
Suppose that at the instant of time , the wave profile is given by the dotted line and after an infinitesimal

time 5t later, the profile has been changed to solid line

(Fig.16.1). The head (B) and tail (A) of an arrow v(x.n)
represent the points of same phase. The propagation
of a wave means the propagation of its phase.

Let the position and time co-ordinates for the
point A be (x, #) and the co-ordinates for the point B

be (x + &x, £ + 8f). Since (kx —wr) expresses the phase > x
of a wave, therefore equality of phase at these two '.' L .
positions can be expressed as o
[k (x+8x)— 0 (+80)] = (ke —of)
=> kéx = oot Fig. 16.1. Hlustration of profile of the waveform.
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The left hﬂﬂ‘! side denotes the rate of change of position with time, i.e. the velocity with which the
Pbﬂse mspom ltsclf.

Thus phase velocity or wave velocity v, = % (163)
[n terms of frequency and wavelength, it can be expressed as
) &
b= T=o [‘_-m=21ruandk=2—;—]
The phase velocity is also given in terms of wavelength A and time period T of the wave.
— l o 1
Al Sv=z| (164)

17. GROUP VELOCITY

When two or more waves with slightly different velocity and frequency superimpose on each other,
a group of waves or a wave packet is formed. The velocity with which the entire group of these waves
travels is known as the group velocity. It is also referred as the velocity of the wave packet.

Consider the superposition of two waves having same amplitude A but slightly different frequencies
, and ®, and wave numbers and k,. The corresponding wave funcitons ¥, and y, are :
~AIL.B)

.(172)

W = ACOS(k|X"0)|f)
y, = A cos(kyx — )
222

The respective phase velocities are v, = _kal and v,
1 2 k
1 2

When the two waves superimpose, the resulting wave function will be
v=yty
w = A cos(k;x — @f) + A cos(kpx — ©00)

Using the mathematical identity : cos 4 + cos B =2 cos( : ; B]Cos(i;—gj , We get

2Acos((k1 +/¢2)x;(ﬂ)1 +“’z)‘)cos((k1 —kz)x;(m, -mz):]

If we consider
(0, + @)2 = o, the average value of angular velocity ;

(k, + k,)/2 = k, the average value of propagation constant ;
®; —®, = Ao, the difference in value of angular velocity ;

ky — k, = Ak, the difference in value of propagation constant.

Then v = 2Acos((Akx;Aw))cos(kx—mf) -(17.3)
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The above wave function represents a resultant wave travelling with frequency o, whose amplitude

is given by
A, 1) = ZAuws(——fo—iz—é—ul’-] 174

The amplitude is no more a constant but depends on both position and time. Thus, the superposition
of two waves results in an amplitude modulation of the total wave, The amplitude given by eqn. (17.4) cap

be interpreted as a broad oscillating envelope (Fig. 17.1) or wave group or wave packet, which has an angyj,,
frequency Aw/2 and propagation constant Ak/2. This envelope moves with a velocity

Ao
e T 2k
If @ and & have continuous spreads, then the group velocity becomes
dw
%= -(17.5)

When we superimpose waves of different amplitudes and frequencies, we obtain a wave packet which
travels with the group velocity vg as a whole.
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Fig. 17.1. The envelope which forms the wave packet travels with group velocity

v, and the carrier wave travels with phase velocity v,,.

Although the crests inside the wave packet move with the phase velocity, the envelope of the packet,
moves with the group velocity given by

v = SJ—E
§ dk
Considering the total wave function as given by eqn. (17.3), we observe that cos(kx — wr) represents

. w . . e Bl s
the carrier wave which moves with a phase velocity v, = rE This carrier wave lies inside an envelope,

which modulates the amplitude of carrier wave.

18. RELATION BETWEEN THE PHASE VELOCITY AND GROUP VELOCITY

The phase velocity Ve = %
W = kvp
Taking the derivative w.r.t. kK on both sides of the above equation, we get
do dv,
o R N
dv, |
ve = B HEG (18.1)
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In order to express this equation in terms of wavelength )., let us use the relation
n

k & o (182
A (18.2)
- -2 (183
-i..f A183)
Dividing egn. (18.2) by eqn. (18.3), we get
k A
.. .. 1 (184
a o .A184)

Substituting eqn. (18.4) in eqn. (18.1), we get

vy = $_1§% (18.5)

The above equation gives the desired relation between the group velocity and the phase velocity.

Case 1 : Non-Dispersive Medium : It is a medium in which waves of different wavelengths have same
velocity, Le. v, is independent of A, so

v,

a0
Hence, from the egn. (18.5), we have
L O

The group velocity is equal to the phase velocity for a non-dispersive medium. The shape of the group
does not change as it propagates forward.

Case 2 : Dispersive Medium : It is a medium in which waves of different wavelengths move with different
velocities, i.e.

dv
L2 20

d\

v

g * %
Key Points :
1. Group velocity is the velocity with which a wave packet travels.

2. The group velocity is always equal to the velocity of the particle. Hence, we can use a wave group
to represent a material particle.

19. RELATION BETWEEN GROUP VELOCITY AND THE PARTICLE
VELOCITY

The velocity of the wave packet V, should be equal to the velocity of the material particle v. Let us
prove their equality.

2RE
The angular velocity o - h
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Differentiating the above equation w.r.t. v on both sides, we get
3
do 2nm0c2( I] l__v2 2( 2v
dv h 2l ¢ ?
.
_ 2mmgy i ﬁ 2
h c?

The propagation constant k can be expressed as

E 2Zn_2np 2nmv _ 21 myv
A h h V2
h 1——2
7 c
where p is the momentym of the particle and A = ;
L
2nmgv(, V)2
k = fisins
h ot

Differentiating the above equation w.r.t. v on both sides, we get

PR q.-
dk 21 my vi) 2 ( J v)2( 2v
—_ = l=—=| +v|-——=||1-— -
dv h (__2 2 02 (.‘2 }
i I | 3
dk 21 my V12 (A v )2
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where m, is the rest mass, & is the Planck constant and £ is the total energy of the particle



dw
Since the group velocity vy = Yy
Dividing eqn. (19.1) by eqn. (19.2), we get
Vg ¥

Therefore, the group velocity of the wave group associated with the ma‘lcrial particle is equal to the
velocity of the material particle. The particle is most likely to be found at a point near the peak of the wave-

packet.

¥ rample 19.1. Find the phase velocity and group velocity of an electron whose de Broglie wavelength is
i2A
Solution : Given : WavelengthA=12A=12x10""m

h
From the de Broglie relation A = Tnj’ we have

. _ ok B 6.6x107>*

e Y 9.1x1073" x1.2x10710

= 6.04x10% ms™
(/) Since, group velocity is equal to the particle velocity
Therefore, vg = 6.04 x10¢ ms!

}
o ho E lmv2
(if) Phase velocity Vo= T hk = = .4
my 2
6
B AR

Hence, phase velocity v, = 3.02x10% ms™!



