

Problems on Theory of Equations :

1. If α, β be the roots of the equation $x^2 - 4x - 21 = 0$ then find the value of the following expressions.

(i) $\frac{\alpha}{3\beta} + \frac{\beta}{3\alpha}$

(ii) $\frac{1}{\alpha^2\beta} + \frac{1}{\beta^2\alpha}$

(iii) $(3\alpha - 1)(3\beta - 1)$

(iv) $\frac{\alpha + 3}{\beta} + \frac{\beta + 3}{\alpha}$

2. The roots of the equation $2x^2 - 7x + 5 = 0$ are α and β . find

(i) $\frac{1}{\alpha} + \frac{1}{\beta}$ (ii) $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$

(iii) $\frac{\alpha + 2}{\beta + 2} + \frac{\beta + 2}{\alpha + 2}$

3. The roots of the equation $x^2 + 6x - 4 = 0$ are α, β . Find the quadratic equation whose roots are

(i) α^2 and β^2

(ii) $2/\alpha$ and $2/\beta$

(iii) $\alpha^2\beta$ and $\beta^2\alpha$

4. If α, β are the roots of $7x^2 + ax + 2 = 0$ and if $\beta - \alpha = -13/7$. Find the values of a .

5. If one root of the equation $2y^2 - ay + 64 = 0$ is twice the other then find the values of a .

6. If one root of the equation $3x^2 + kx + 81 = 0$ (having real roots) is the square of the other then find k .

7. Use Descartes' Rule of Signs to describe all possibilities for the number of positive, negative, and imaginary zeros of

(i) $p(x) = x^4 + x^3 + x^2 + x + 12$.

(ii) $q(x) = 2x^4 - 2x^3 - 5x^2 - x + 8$

8. Give the statement of the Descartes's rule of sign of a polynomial equation.

9. State the fundamental theorem of algebra regarding roots of polynomials.

10. Prove that Every polynomial of degree $n > 0$ has exactly n roots where the roots are counted according to their multiplicities.

11. Form the equation of the lowest degree with rational coefficients whose roots are $3 + \sqrt{5}$ and 1 .

12. Solve the equation $x^4 + 4x^3 + 5x^2 + 2x - 2 = 0$ which one root is $-1 + i$.

13. If α, β, γ be the roots of the equation $x^2 + ax + b = 0$, find the value of

(i) $\sum \frac{\alpha}{\beta\gamma}$ (ii) $\sum \frac{\alpha\beta}{\gamma}$ (iii) $\sum \frac{\alpha}{\beta + \gamma}$ (iv) $\sum \frac{1}{\beta + \gamma}$ (v) $\sum \alpha^3$ (vi) $\sum \frac{\beta}{\gamma} + \frac{\gamma}{\beta}$

14. . If α, β, γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$ find values of

(i) $(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha)$ (ii) $(\beta + \gamma - 2\alpha)(\gamma + \alpha - 2\beta)(\alpha + \beta - 2\gamma)$

15. If the roots of the equation $x^3 + px^2 + qx + r = 0$ are in A.P., show that $2p^3 - 9pq + 27r = 0$.

16. Solve the equation $x^3 - 7x^2 + 14x - 8 = 0$ given that its roots are in G.P.

17. If the sum of the two roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ equals the sum of the other two, prove that $p^3 + 8r = 4pq$.

18. Solve the equation $x^3 - 4x^2 - 3x + 18 = 0$ given that two of its roots are equal.

19. Prove that the sum of the cubes of the roots of $x^3 - 6x^2 + 11x - 6 = 0$ is 36

20. If A is symmetric or skew-symmetric, prove that (i) A^2 is symmetric (ii) $A A' = A' A$.

11. If A and B are both symmetric or skew-symmetric of the same order and $AB = BA$, then show that AB is symmetric.

12. Find all matrices which commute with the matrix $\begin{bmatrix} 7 & -3 \\ 5 & -2 \end{bmatrix}$.

13. Show that the matrix $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ is a solution of the equation $A^2 - 5A + 7I = 0$.

14. Define the inverse of a matrix. State a necessary condition for a matrix to be invertible.

15. Prove that for two invertible matrices A and B, (i) $((A)^{-1})^{-1} = A$ (ii) $(AB)^{-1} = B^{-1}A^{-1}$

16. When a matrix is called idempotent ? Show that if A is idempotent, then $I - A$ is also an idempotent.

17. For a non-singular matrix A, show that $A(\text{Adj } A) = (\text{Adj } A)A = |A| I$

18. Solve : $x + y + z = 9$, $2x + 5y + 7z = 52$, $2x + y - z = 0$ by the Cramer's rule.

19. Define rank of a matrix. Find the ranks of the following matrices

$$(i) \begin{bmatrix} 2 & 1 & 3 \\ 6 & 3 & 1 \end{bmatrix} \quad (ii) \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 0 \\ 3 & 4 & 3 \end{bmatrix} \quad (iii) \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 2 & 3 & 3 & 2 \end{bmatrix}$$

20. Find the ranks of the following matrix

$$\begin{bmatrix} 2 & 0 & 4 & 6 \\ 3 & 2 & 1 & 5 \\ 7 & 2 & 9 & 17 \end{bmatrix}$$